Pepite: helping teachers diagnose students' algebra competencies

Élisabeth DELOZANNE IUFM de Créteil , LIUM (Le Mans), France

Dominique PRÉVIT, Pierre JACOBONI IUFM de Bretagne , LIUM (Le Mans), France

Brigitte GRUGEON-ALLYS
IUFM d'Amiens DIDIREM (Paris7)

Overview

- > Pepite project
 - ♦ Educational foundations (Grugeon 95)
 - ♦ Pepite software (Jean 2000, Prévit 2002)
 - ♦ Pepite testings (Delozanne &al 2002)
 - ♦ Scenarios of use
- > Results and questions

Pedagogical Basic Assumptions

- Students' answers show coherences in their reasoning
- It is possible to analyse their answers to identify the coherences the students have built (correct, partial, inappropriate)
- Identifying those coherences would help teachers to give appropriate tasks to destabilize them (if inappropriate) and to make them evolve

Design assumptions

- > Computers can help teachers both
 - in identifying competences
 - "Pépites" (nuggets)
 - in giving appropriate tasks to enhance learning and understanding
 - building "Lingot", (ingot)
- Three classes of end users
 - ♦ Students
 - usual user-centered design techniques (Human Computer Interaction)
 - task analysis based on educational research
 - ♦ Teachers & Educational researchers
 - · new usage patterns to be invented
 - participatory design (researchers and teachers)

Pépite Project

- Objective
 - ♦ To help teachers diagnose student's competence in algebra in order to better regulate learning
- Multidisciplinary project
 - ♦ Educational research in mathematics (DIDIREM)
 - a multidimensional model of algebraic competence
 - · a paper and pencil diagnostic tool
 - ♦ Computer science research (LIUM)
 - (partial) automation of this paper and pencil diagnostic tool
 - **♦** Together

 - Usage
 Developing awareness about diagnosis algebra competencies
 diagnosis algebra

 - Watching teachers using Pépite in classrooms

 with ergonomics (J. Rogalski, CNRS et Paris 8)
 - Spreading research results
 - Modelisation
 - Algebraic tasks, diagnosis tasks (teaching scenarios)

A paper&pencil diagnosis tool

(Grugeon 1995)

- A multidimensional model of competence
 - ♦ Mastered skills, meaning of letters, processing algebraic expressions, translation between representations, type of justification
- A set of Paper & pencil exercises and an analysis grid
 - ♦ 3 kinds of problems:
 - · Technical (generational and transformational), modelling, interpreting skills
 - ♦ Analysis grid derived from the model of competence
 - To characterize the exercises and to characterize usual students answers
- Students' profiles
 - ♦ quantitative description
 - · Success rates on mastered skills
 - qualitative description
 - Meaning of letters, processing algebraic expressions, translation between representations, type of rationality
 - description of flexibility between representations
 - Diagram

Diagnosing method

> Objective :

- ♦ To situate the student in the model of competence
- By identifying coherences in students' answers (not only errors) in order to :
 - Develop accurate conceptions
 - Destabilize inaccurate conceptions

Diagnosing task for the teacher:

- ♦ To make students having the test
- ♦ To interpret first each student's answer
 - To code the student answers to each exercice
 - → fine description
- To built the student's profile
 To analyse globally the coding

 - ⇒ overview

Pepite testings

Context	Situations	Users	Numbers	Data
Testing students	Classrooms	Students	200	Answers, questionnaires, observations, research reports
Educational research	Prototypes of profiles	Researchers	5	Lists of usability problems, modification in didactic modelling
Teachers training	Studying 1 student, students competencies	Pre &Inservice teachers	140	Questionnaires & observations
Pilot session	Individual support, evaluation of their students	Teachers	6	Observations, audio-tapes, interviews, questionnaires
Spontaneous uses	Classroom, teachers training	Teachers and teachers trainers	11	Report

Scenarios of uses

- > A priori scenario written by designers
 - ♦ diagnosing students to regulate learning
- Observed scenarios
 - ♦ Assessment before an examination
 - ♦ Learning activities : socio-cognitive conflict
 - Whole class
 - Working by pair
 - ♦ Help in making teacher's mind for in orientation process
- > A posteriori scenarios written by teachers

 - at the beginning of the year
 Design of a "Class geography"
 Reviewing prerequisites
 - keeping track of students evolution to be used later

What teachers like?

- > Pepitest
 - shows competences that they were not aware of
 - gives them ideas of exercices they were not used to ask
- > In training sessions
 - ♦ Coding software
- > Pepite
 - makes them more confident with their poor students
 - helps them to install new relationship with their students' errors
 - helps them to understand the new official program in mathematics
 - ♦ increases students confidence in their teacher's competence

What teachers do not like?

- > difficulties with using computers
- > time consuming (1 H1/2 test, 1/4 H analysis)
- > the cognitive profile and "didactical jargon"
- > distorting mirror of their teaching
- mistrust of their understanding of algebra teaching
- > mistrust of their professional competence

What teachers ask for ?

- > remediation proposals according to student's
- > a feedback for the students given by the software
- > possibility to modify the test, to adapt it
- > training in using the model of competence and algebra teaching
- > a "cognitive geography" for the whole class
- > printing facilities for paper and pencil work
- > an editor for algebraic expressions

Future work on diagnosis

- > A more open software
 - ♦ Adapted to
 - Several tests
 - Several types of users (teachers, students, researchers)
 - Several diagnosis process according to uses (
 - static/adaptativeAutomatic/assisted
 - ♦ Ву
 - Modelling diagnosis method in order to generate diagnosis tools from patterns
 - Better analysing open answers
- > Teaching strategies adapted to each profile
 - **♦** Amico
 - **♦** Envidap
- > A diagnostic for students

Key elements in Pépite

- > An iterative methodology which enables us
 - ♦ to work in a pluridisciplinary context and in classrooms
 - ♦ to build an "instrument" for teachers (Rabardel)
 - Intrumentalisation (artefact evolution)
 - Instrumentation (teacher evolution)
 - ♦ to spread research results
- A diagnostic assistant in order to help teachers improving their teaching of algebra

Web sites

Download and research documents http://pepite.univ-lemans.fr

Documents for teachers (in french)
http://maths.creteil.iufm
(formation continue, la compétence algébrique du collège au lycée)